

Sound

Mechanical pressure waves in air
(demo bell jar in vacuum)

Hearing: biological detection of sound waves

frequency: units $\frac{1}{\text{time}}$ $\Rightarrow \frac{1}{\text{s}} \equiv \text{Hertz} = \text{Hz}$

freq range for hearing (approximate)

- low frequency: $\sim 20 \text{ Hz}$ all ages
- highest "": depends on age

0-25 years old : up to $\sim 20 \text{ kHz}$

25-40 : up to $\sim 15 \text{ kHz}$

50+ : up to $\sim 12 \text{ kHz}$

(typically less for older people)

Ultrasound (US)

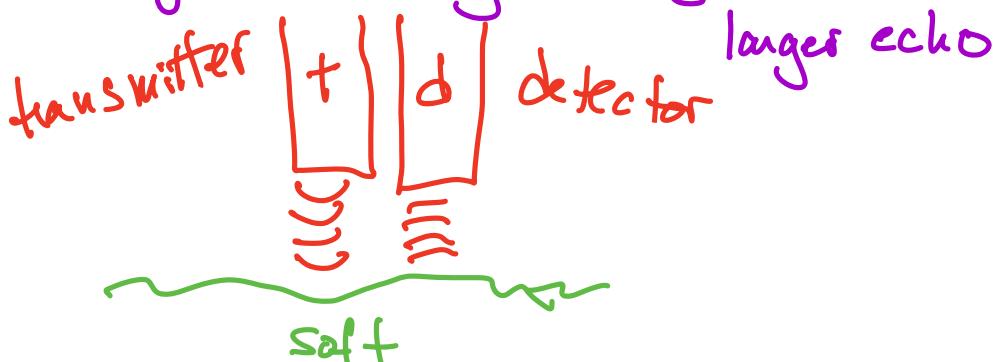
used for non-invasive measurements

(mostly in medicine)

$$f_{us} \sim 2-15 \text{ MHz}$$

can probe various densities

\Rightarrow higher density \rightarrow higher v_{sound} and



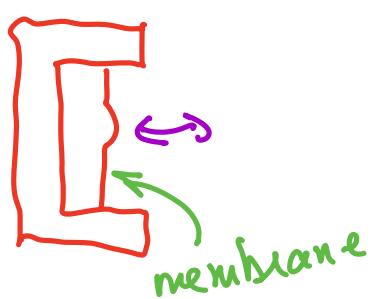
hard

strength of echo depends on materials (soft, hard, etc)

\Rightarrow measure: arrival time in detector

if you know velocities, you know
density for different depths

Sound: compression & rarefaction of air
density \uparrow density \downarrow



- membrane vibrates in/out
- pushes on air \rightarrow creates longitudinal pressure

wave propagation out

- drive speaker with sine wave
- speaker moves in/out sinusoidally displacing air molecules:

$$s(x, t) = S_{\max} \cos(kx \pm \omega t)$$

$\underbrace{S_{\max}}$ = max displacement

note: energy from speaker \Rightarrow air

- changing air displacement \Rightarrow pressure
- some heating of air

velocity of sound (m/s)

	air	water	glass	steel
v_s	~ 340	~ 1500	~ 5500	~ 6000

for air, $v = \sqrt{\frac{B}{\rho}}$

B = bulk modulus: measures resistance to compression under pressure

so $B = \Delta P / \left(\frac{\Delta V}{V} \right)$ ΔP change in pressure
 $\frac{\Delta V}{V}$ fractional change
 in volume

ρ = air density (kg/m^3) $\approx 1.225 \text{ kg/m}^3$
 at sea level, $68^\circ\text{F} \approx 20^\circ\text{C}$

B and ρ change w/ temp

so use $v_0 = v_{\text{el}}$ at $T = 20^\circ\text{C}$

$$v = v_0 \sqrt{\frac{T}{273}} \quad v_0 \approx 330 \text{ m/s}$$

$T \in 273$ in K Kelvin

ex: $v(T = \text{freezing} = 0^\circ\text{C} = 273\text{K} = 330\text{m/s})$
 $20^\circ\text{C} = 68^\circ\text{F} = 293 = 342\text{m/s}$
 $40^\circ\text{C} = 104^\circ\text{F} = 313\text{K} = 353\text{m/s}$
 ~7% higher

Derivation: see text

900 2/5

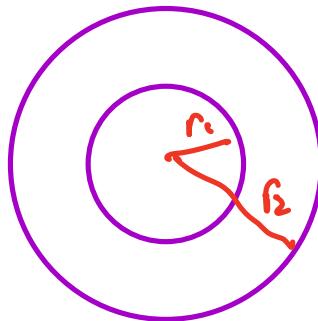
Intensity

same as Ch 16: $I = \frac{P_{\text{av}}}{\text{area}}$

sound travels in 3D, waves spread out
 over increasingly large area

in 3D, area = $4\pi r^2$ r is dist from source

units: $[I] = \frac{W}{m^2}$



Power is:

$$P = IA$$

integrate intensity
over area

assume I is constant over area

$$\text{then } P = I \cdot A = I \cdot 4\pi r^2$$

P is what source puts out so is
constant over any area

I goes down as $\frac{1}{r^2}$ as area increases by r^2

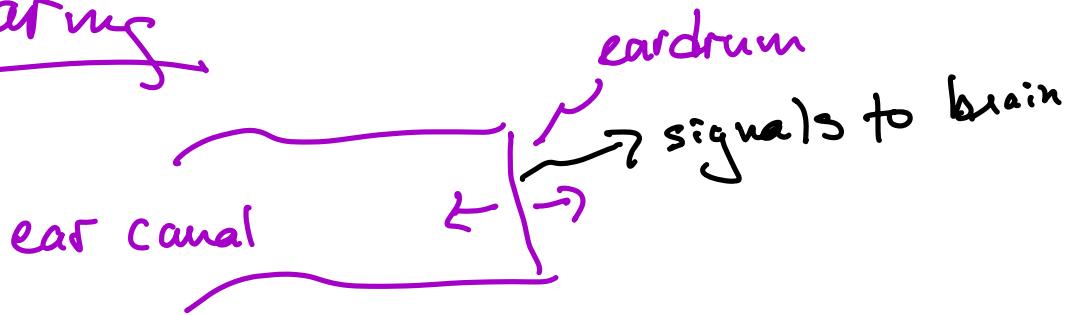
$$\text{so at any } r: I_1 A_1 = I_2 A_2$$

$$I_1 \cdot 4\pi r_1^2 = I_2 \cdot 4\pi r_2^2$$

$$\text{or } I_2 = I_1 \cdot \frac{r_1^2}{r_2^2}$$

so double r , intensity decreases by $\times 4$

Hearing



see any youtube video on how the ear works

Sound loudness

human ear handles huge range of intensities

threshold: $I_0 = 10^{-12} \text{ W/m}^2$

pain level: $I_{\text{max}} = 1 \text{ W/m}^2$
 $= 10^{12} I_0$

\Rightarrow dynamic range of 10^{12}

decibel: $\beta(I) = 10 \log_{10}(I/I_0) \text{ (dB)}$

is another way of characterizing "loudness"

Review logarithms

log: say $y = 10^x$
then $x = \log_{10} y$

1. $\log(x^a) = a \log x$
2. $\log 10 = 1$ $\log 1 = 0$
3. $\log(a \cdot b) = \log(a) + \log(b)$
4. $\log(a/b) = \log(a) - \log(b)$
5. $10^{\log_{10} x} = x$

dB for I_0 :

$$\beta(I_0) = 10 \log(I_0/I_0) = 10 \log(1) = 0 \text{ dB}$$

dB for I_{\max} :

$$\begin{aligned} \beta(I_{\max}) &= 10 \log\left(10^2 I_0/I_0\right) = 10 \log(10^2) \\ &= 10 \cdot 2 = 120 \text{ dB} \end{aligned}$$

dB	0	40	80	95	100	120
threshold sound level	at home	loud radio	Tennis b-ball	siren 30m	loud rock concert	

160 \Rightarrow eardrums burst

ex: Intensity I_1 is doubled to I_2
 \Rightarrow what is increase in dB?

$$\Delta \beta = 10 \log(I_2/I_0) - 10 \log(I_1/I_0)$$

$$= 10 \left[\log(I_2/I_0) - \log(I_1/I_0) \right] = 10 \log(I_2/I_1)$$
$$= 10 \log 2 \text{ and } \log 2 = 0.30$$

so $\Delta \beta = 3 \text{ dB}$ for x2 change in intensity

What does intensity depend on?

\Rightarrow sound is a longitudinal wave

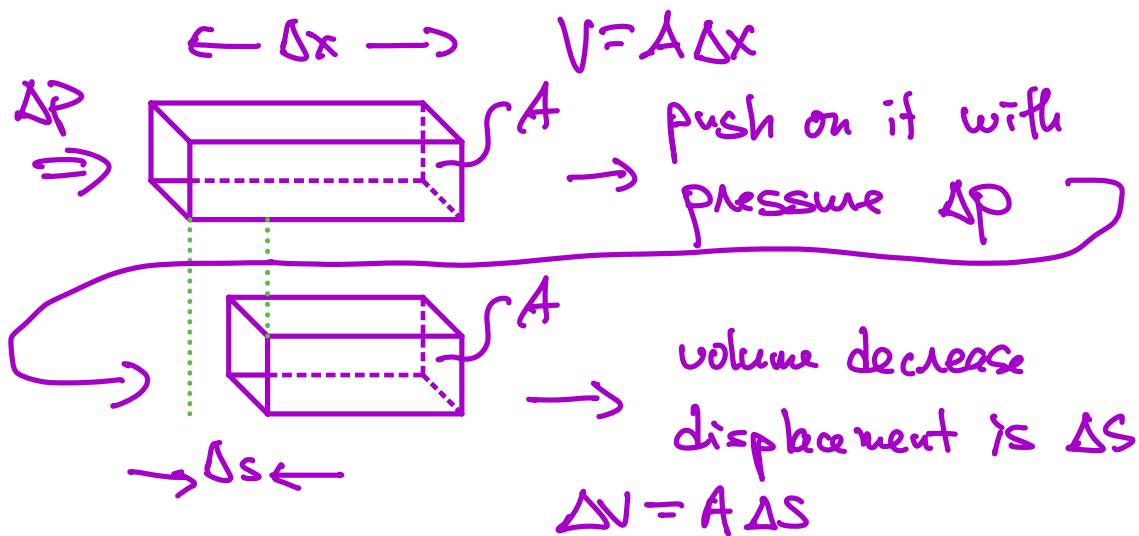
\Rightarrow the change in pressure causes displacement

$s(x,t)$ is the displacement of molecules along x -direction

\Rightarrow when pressure increases, molecules are squeezed together, no displacement yet due to inertia

\Rightarrow molecules then move but stop when pressure gets small, turn around, etc.

\Rightarrow this is the model of a longitudinal wave



Note: ΔP is increase of pressure above atmospheric

Bulk modulus: $\frac{\text{amount of pressure increase}}{\text{fractional change in volume}}$

$$B = -\frac{\Delta P}{\Delta V/V} \quad \text{minus sign: as } \Delta P \uparrow, \Delta V \downarrow$$

$$\frac{\Delta V}{V} = \frac{A \Delta s}{A \Delta x} = \frac{\Delta s}{\Delta x} \rightarrow \frac{\partial s}{\partial x} \text{ as } \Delta x \rightarrow 0$$

200 2/10

from $B = -\frac{\Delta P}{\Delta V/V}$ write

$$\Delta P = -B \frac{DV}{V} \xrightarrow{x=0} -B \frac{\partial S}{\partial x}$$

this is change in pressure needed to move the column (pressure increases by ΔP) by amount ΔS

$$\text{use } S = S_{\max} \cos(kx - wt) \quad (\phi=0)$$

$$\text{then } \frac{\partial S}{\partial x} = -k S_{\max} \sin(kx - wt)$$

$$\text{so } \Delta P = -B \frac{\partial S}{\partial x} = B k S_{\max} \cos(kx - wt)$$

$$\text{or } \Delta P = \Delta P_{\max} \cos(kx - wt)$$

$$\text{where } \Delta P_{\max} = B k S_{\max}$$

$$S = S_{\max} \cos(kx - wt)$$

$$\Delta P = \Delta P_{\max} \sin(kx - wt)$$

out of phase

$$\text{and } \Delta P_{\max} = B k S_{\max}$$

$$\text{now use } V = \sqrt{B/\rho} \text{ vel sound so } B = V^2 \rho$$

$$\begin{aligned} \text{substitute to get } \Delta P_{\max} &= V^2 \rho k S_{\max} \\ &= V \cdot \frac{\omega}{k} g k S_{\max} \end{aligned}$$

or

$$\Delta P_{\max} = \nu w g S_{\max}$$

Instantaneous intensity

Now calculate intensity $I(t) = \frac{\text{Power}(t)}{\text{area}}$

$$\begin{aligned} P = \text{Power} &= \frac{\Delta E}{\Delta t} \text{ and } \Delta E = \text{work done} \\ &= \text{Force} \times \text{displacement} \\ &= F \cdot \Delta S \end{aligned}$$

$$\Rightarrow P = \frac{\Delta E}{\Delta t} = \frac{F \cdot \Delta S}{\Delta t} = F \cdot \frac{\Delta S}{\Delta t}$$

$$\text{and } \frac{F}{A} = \Delta p \text{ pressure}$$

$$\Rightarrow I = \frac{P}{A} = \frac{F \cdot \frac{\Delta S}{\Delta t}}{A} = \Delta p \cdot \frac{\Delta S}{\Delta t} \rightarrow \Delta p \cdot v_s$$

$$\begin{aligned} \text{and } v_s &= \frac{\partial S}{\partial t} = \frac{\partial}{\partial t} S_{\max} \sin(kx - \omega t) \\ &= S_{\max} \omega \sin(kx - \omega t) \end{aligned}$$

$$I(t) = \Delta p(t) \cdot v_s(t) \text{ both depend on time}$$

$$= \Delta p_{\max} \sin(kx - \omega t) \cdot \frac{\partial S}{\partial t}$$

$$= \Delta p_{\max} \sin(kx - \omega t) \cdot S_{\max} \omega \sin(kx - \omega t)$$

$$= \Delta P_{\max} S_{\max} \omega \sin^2(kx - \omega t)$$

$$= I_{\max} \sin^2(kx - \omega t)$$

where $I_{\max} = \Delta P_{\max} S_{\max} \omega$

Average intensity \bar{I}

$\bar{I} = I(t)$ averaged over 1 cycle

so if $I(t) = I_{\max} \sin^2(kx - \omega t)$ then

$$\bar{I} = I_{\max} \overline{\sin^2(kx - \omega t)} = \frac{1}{2} I_{\max}$$

because $\overline{\sin^2 \theta} = \frac{1}{2}$ for any θ

$$\text{so } \bar{I} = \frac{1}{2} I_{\max} = \frac{1}{2} \Delta P_{\max} S_{\max} \omega$$

substitute for S_{\max} using $\Delta P_{\max} = \rho v f S_{\max}$

$$\bar{I} = \frac{1}{2} \Delta P_{\max} \omega \cdot \frac{\Delta P_{\max}}{\rho v f} = \frac{\Delta P_{\max}^2}{2 \rho v f}$$

$$\bar{I} = \frac{\Delta P_{\max}^2}{2 \rho v f}$$

average intensity (over 1 cycle)

ΔP_{\max} = pressure amplitude of sound wave

$$\rho = \text{density air } \stackrel{?}{=} 1.225 \text{ kg/m}^3 \quad v = \text{vel sound} \quad 330 \text{ m/s} @ 0^\circ\text{C} \quad 400 \text{ Hz}$$

ex: average intensity at hearing threshold:

$$I_0 \sim 10^{-12} \frac{\text{W}}{\text{m}^2}$$

$$\text{so } I_0 = 10^{-12} \text{ W/m}^2 = \frac{\Delta P_{\text{max}}^2}{2 \rho v} \text{ solve for } \Delta P_{\text{max}}$$

$$\Delta P_{\text{max}} = \sqrt{2 \rho v I} = \sqrt{2 \cdot 1.225 \cdot 330 \cdot 10^{-12}}$$

$$= 28 \times 10^{-6} \text{ Pa} \text{ very small pressure}$$

$$\text{find } S_{\text{max}} = \frac{\Delta P_{\text{max}}}{\rho v g} \quad \text{use } f = 1 \text{ kHz}$$

$$S_{\text{max}} = \frac{20 \times 10^{-6}}{330 \cdot 2\pi \cdot 1.225 \cdot 1000} = \sim 10 \text{ pm} !!$$

pain threshold for hearing $I_{\text{max}} = 1 \text{ W/m}^2$

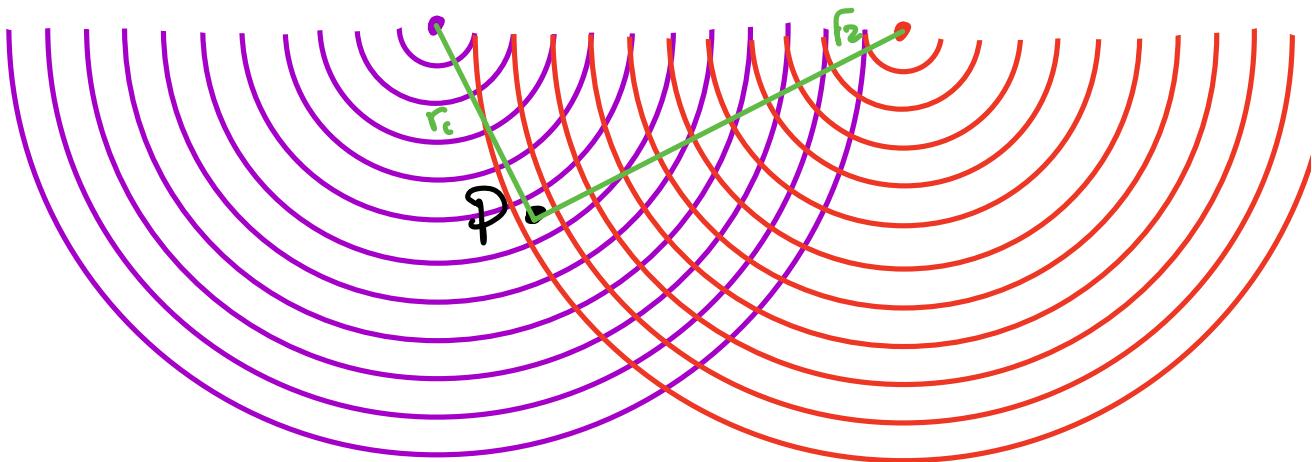
$$\text{both } \Delta P_{\text{max}} \text{ and } S_{\text{max}} \sim \sqrt{I} \sim 10^6 \sqrt{I_0}$$

$$\text{so at pain threshold } \Delta P_{\text{max}} = 28 \text{ Pa} \\ \Delta S_{\text{max}} = 10 \mu\text{m}$$

this shows how amazing hearing is!

200 2/14 Sound wave interference

- start w/ 2 sources of sound
- both have same amplitude & freq & velocity
(so same λ)
- put sources in different locations



each wave has amplitude at point P given by

$$\left. \begin{aligned} y_1 &= A \sin(kr_1 - \omega t) \\ y_2 &= A \sin(kr_2 - \omega t) \end{aligned} \right\} \begin{matrix} r_1, r_2 \text{ is dist to P} \\ \text{from each source} \end{matrix}$$

add to get $y_{\text{tot}} = A[\sin(kr_1 - \omega t) + \sin(kr_2 - \omega t)]$

let $\Delta r \equiv r_2 - r_1$ difference

and $\bar{r} = \frac{1}{2}(r_1 + r_2)$ average

$$\text{solve for } r_1, r_2 : \Delta r = r_2 - r_1$$

$$2\bar{r} = r_2 + r_1$$

$$\text{so } 2r_2 = \Delta r + 2\bar{r}$$

$$r_2 = \bar{r} + \frac{1}{2}\Delta r$$

$$r_1 = \bar{r} - \frac{1}{2}\Delta r \text{ to get } r_2 - r_1 = \Delta r$$

$$\text{so } y_1 = A \sin(k\bar{r} - \frac{1}{2}k\Delta r - wt)$$

$$y_2 = A \sin(k\bar{r} + \frac{1}{2}k\Delta r - wt)$$

$$\begin{aligned} y_1 + y_2 &= A \sin(k\bar{r} - wt - \frac{1}{2}k\Delta r) + A \sin(k\bar{r} - wt + \frac{1}{2}k\Delta r) \\ &= A \sin(\alpha - \frac{1}{2}k\Delta r) + A \sin(\alpha + \frac{1}{2}k\Delta r) \\ &\approx A \left[\sin \alpha \cos \frac{1}{2}k\Delta r - \cos \alpha \sin \frac{1}{2}k\Delta r \right] \\ &\quad + A \left[\sin \alpha \cos \frac{1}{2}k\Delta r + \cos \alpha \sin \frac{1}{2}k\Delta r \right] \\ &= 2A \sin \frac{1}{2}k\Delta r \sin \alpha \\ &= 2A \cos \left(\frac{1}{2}k\Delta r \right) \sin(k\bar{r} - wt) \end{aligned}$$

Constructive interference condition

if $\frac{1}{2}k\Delta r = 0, \pi, 2\pi, \dots = n\pi$ then $\cos(\cdot) = \pm 1$

so waves interfere constructively

$$\text{so } \frac{1}{2} k \Delta r = n\pi \\ k \Delta r = n \cdot 2\pi$$

$$D = \frac{2\pi}{\lambda} \text{ so } \frac{2\pi}{\lambda} \Delta r = n \cdot 2\pi \quad n =$$

$\Delta r = n\lambda, n=0,1,2\dots$ constructive interference !

if path difference is $n\lambda \Rightarrow$ constructive interference

Destructive interference condition

if $\frac{1}{2} k \Delta r = \frac{\pi}{2}, \frac{3\pi}{2}, \dots$ then $\cos(\phi) = 0$ destructive

$$\frac{1}{2} \frac{2\pi}{\lambda} \cdot \Delta r = \frac{1}{2} n\pi, n=1,3,5 \text{ and}$$

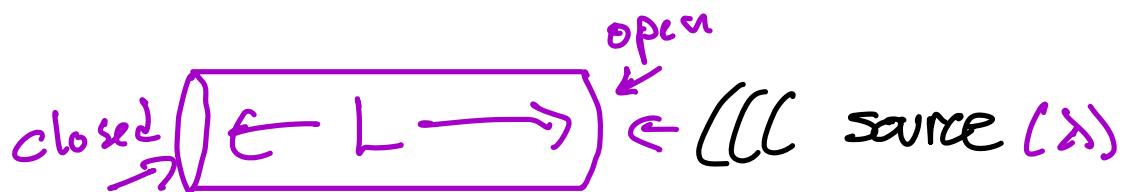
$$\Delta r = \frac{1}{2} n\lambda \quad n=\text{odd}$$

$$\text{or } \Delta r = \frac{1}{2} (2n+1)\lambda, n=0,1,2\dots$$

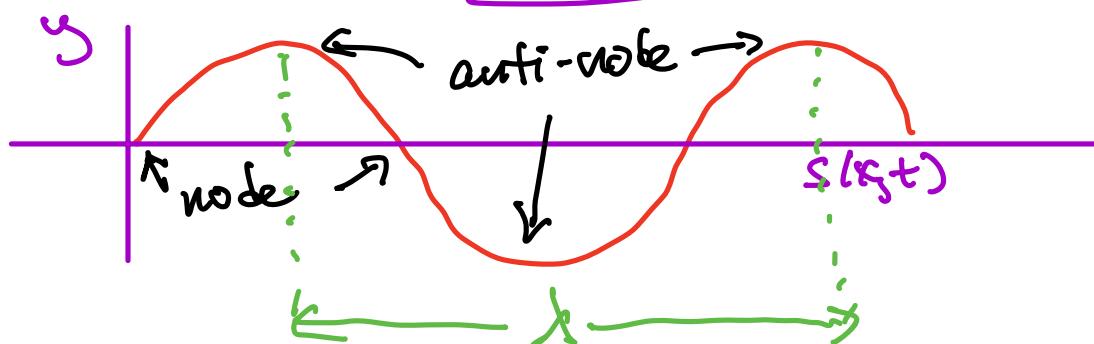
$\Delta r = (n + \frac{1}{2})\lambda \quad n=0,1,2\dots$ destructive

see <https://www.physics.umd.edu/hep/drew/optics/antenna.html>

Resonance in tube w/ one end closed



- molecules of air cannot move at closed end but can at open end
- so if displacement wave has node (no movement) at closed end anti-node (max movement) at open end this wave will resonate in tube



so if source emits sound w/ wave length:

$$L = \frac{1}{4}\lambda$$

then reflected wave of incoming wave will interfere constructively and cause resonance

also $L = \frac{3}{4}\lambda$, and others adding $\frac{1}{2}\lambda$

resonance at $L = \frac{1}{4}\lambda, \frac{3}{4}\lambda, \frac{5}{4}\lambda, \frac{7}{4}\lambda, \dots$

or $\lambda_n = 4L, \frac{4L}{3}, \frac{4L}{5}, \dots = \frac{4L}{n}$ $n=1, 3, 5, \dots$

only these will "fit" and resonate

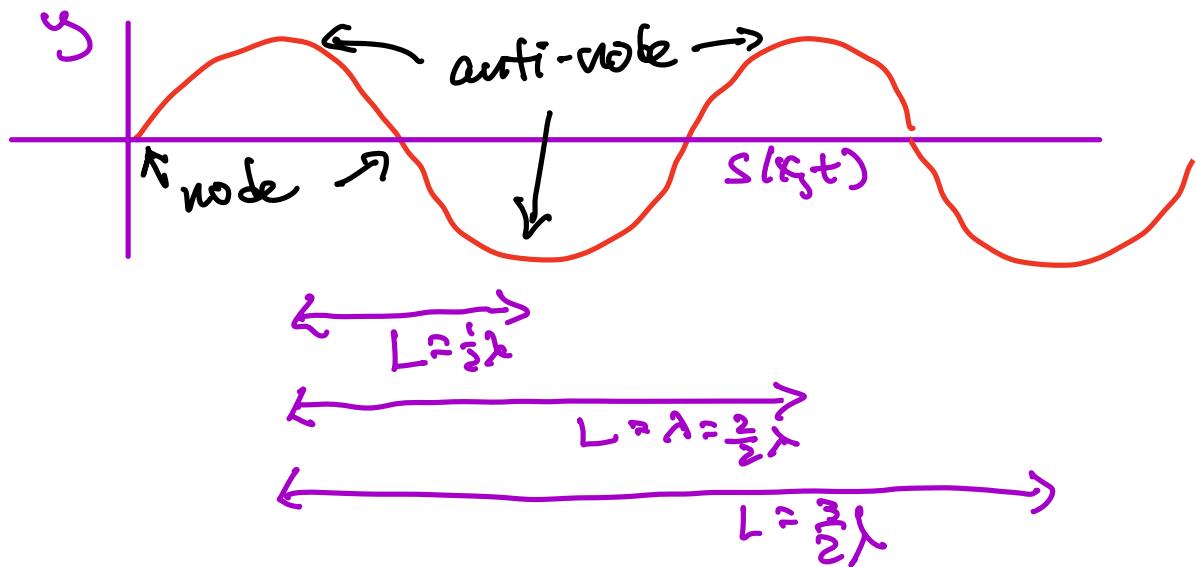
frequency: $v = \lambda f$ so $f = \frac{v}{\lambda}$

$$f_n = \frac{v}{4L/n} = n \frac{v}{4L}, n=1, 3, 5, \dots$$

$$f_1 = \frac{v}{4L} \text{ so } f_n = n f_1 \text{ f fundamental frequency}$$

Tube open at both ends

\Rightarrow resonates at wavelengths that have anti-nodes at both ends



$$\Rightarrow L = \frac{n\lambda}{2} \quad n=1, 2, 3 \dots$$

$$\text{or } \lambda_n = \frac{2L}{n} \quad "$$

$$f_n = \frac{v}{\lambda_n} = \frac{n v}{2L} = n f_1, \quad n=1, 2, 3 \dots$$

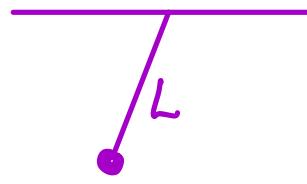
$$f_1 = \frac{v}{2L}$$

Resonance

- any mechanical or electrical system will have "natural oscillation"

ex: • child on swing

- pendulum



$$\omega_0 = \sqrt{g/L}$$

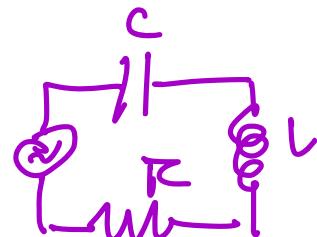
$$\omega_0 = 2\pi f_0$$

f_0 is "natural" freq

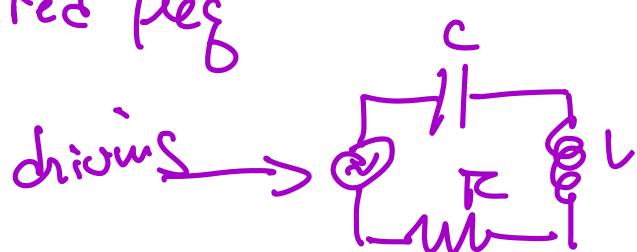
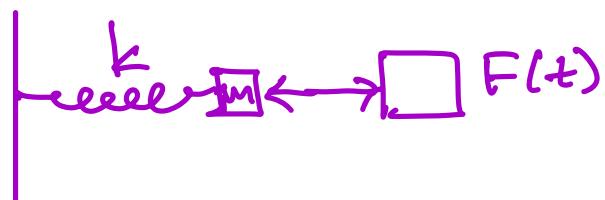
- spring

$$\omega_0 = \sqrt{k/m}$$

- LCR circuit



2. you can "drive" any system at any desired freq



if driving frequency matches natural frequency \Rightarrow resonance

Beats

2 tuning forks w/ different $\omega = 2\pi f$

$$y_1 = A \sin(\omega_1 t)$$

$$y_2 = A \sin(\omega_2 t)$$

$$\text{add: } y_{\text{tot}} = A \sin(\omega_1 t) + A \sin(\omega_2 t) \\ = A \left[\sin(\omega_1 t) + \sin(\omega_2 t) \right]$$

from $\bar{\omega} = \frac{\omega_1 + \omega_2}{2}$

$$\Delta\omega = \omega_1 - \omega_2$$

solve for ω_1, ω_2

$$2\bar{\omega} = \omega_1 + \omega_2$$

$$\Delta\omega = \omega_1 - \omega_2$$

$$\text{add: } 2\bar{\omega} + \Delta\omega = 2\omega_1$$

$$\omega_1 = \bar{\omega} + \frac{1}{2}\Delta\omega$$

$$\omega_2 = \omega_1 - \Delta\omega = \bar{\omega} - \frac{1}{2}\Delta\omega$$

$$\text{rewritte: } y_{\text{tot}} = A \left[\sin(\bar{\omega}t + \frac{1}{2}\Delta\omega t) + \sin(\bar{\omega}t - \frac{1}{2}\Delta\omega t) \right]$$

expand $\sin(\bar{\omega}t \pm \frac{1}{2}\Delta\omega t)$

$$= \sin \bar{\omega}t \cos \frac{1}{2} \Delta \omega t \pm \\ \cos \bar{\omega}t \sin \frac{1}{2} \Delta \omega t$$

$$y_{\text{tot}} = A [\sin \bar{\omega}t \cos \frac{1}{2} \Delta \omega t + \cos \bar{\omega}t \sin \frac{1}{2} \Delta \omega t \\ + \sin \bar{\omega}t \cos \frac{1}{2} \Delta \omega t - \cos \bar{\omega}t \sin \frac{1}{2} \Delta \omega t] \\ = 2A \cos(\frac{1}{2} \Delta \omega t) \sin(\bar{\omega}t)$$

if f_1 & f_2 are "close", then $\Delta \omega \ll \bar{\omega}$

$$\text{ex: } f_1 = 440 \text{ Hz}$$

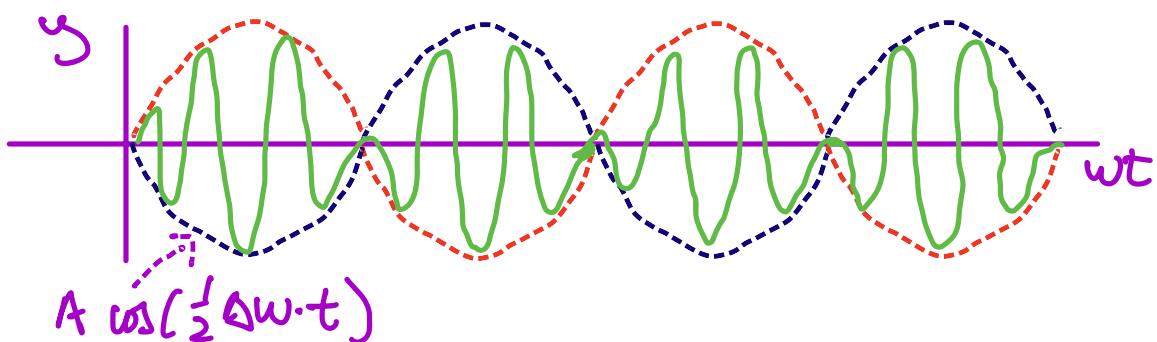
$$f_2 = 442 \text{ Hz}$$

$$\Delta f = 2 \text{ Hz}$$

$$\bar{f} = 441 \text{ Hz}$$

$2A \cos(\frac{1}{2} \Delta \omega t)$ will be like a very slowly varying amplitude of a sound at frequency \bar{f}

see <https://www.physics.umd.edu/hep/drew/superposition.html>



The signal $\sin(\bar{\omega}t)$ is "modulated" by $\frac{1}{2}\Delta\omega t \rightarrow$ "Beat freq" is $|\Delta\omega|$

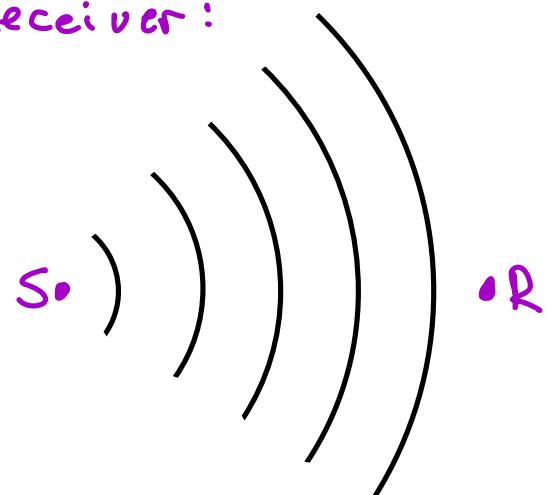
Doppler Effect see "non Relativistic Doppler Shift" simulation

"normal"- stationary source and receiver

\Rightarrow what happens when source moves?

e.g. police car w/siren driving by

stationary source & receiver:

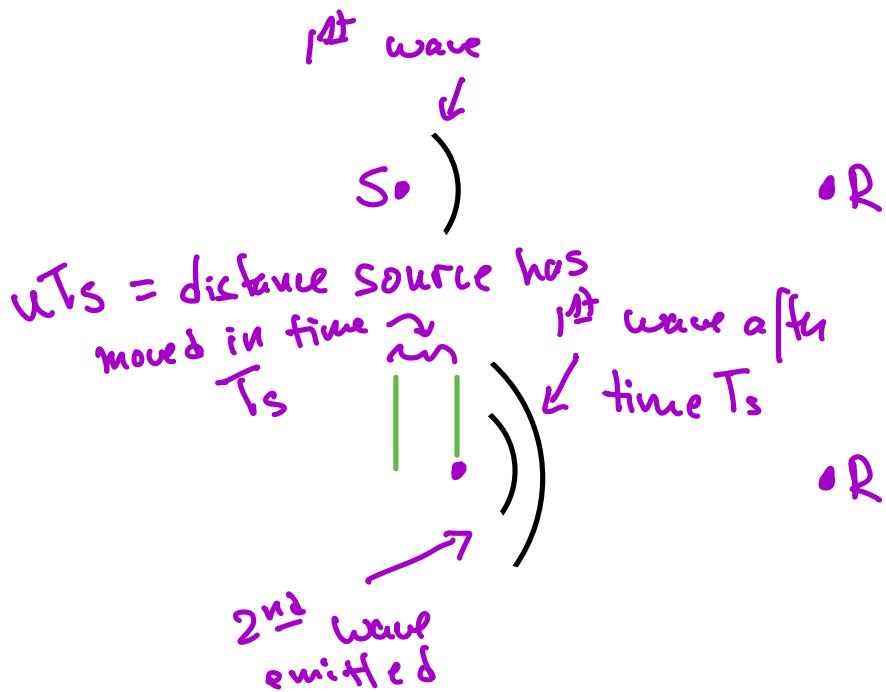


Source moves w/velocity u

Wave moves w/velocity $v = \lambda_s f_s$ and $f_s = 1/T_s$

- source puts out wave, and after time T :
 - wave is distance λ away
- during that time source has moved closer to receiver

- next wave will be emitted closer to receiver than 1st wave



- receiver R sees smaller dist d between waves

$$d = \lambda_s - u\Delta t \quad \Delta t \text{ is time between wave}$$

$$\text{emission: } \Delta t = T_s$$

$$\text{so } d = \lambda_s - uT_s \quad \text{use } v = \lambda f_s, f_s = 1/T_s$$

$$= \frac{v}{f_s} - \frac{u}{f_s} = \frac{v-u}{f_s}$$

R sees waves arriving that have wave length

$\lambda_R = d$ and waves are still moving

w/velocity v and $v = \lambda f$

$$\text{so } v = \lambda_R f_R = d f_R$$

$$d = \frac{v}{f_R}$$

$$\text{so } d = \lambda_s u T_s$$

$$\text{or } \lambda_R = \lambda_s - \frac{u}{f_s} \quad \text{as } \lambda_R = \frac{v}{f_R}$$

$$\frac{v}{f_R} = \frac{v}{f_s} - \frac{u}{f_s}$$

$$\frac{f_R}{v} = \frac{f_s}{v-u}$$

source moving towards R

S moving towards R

if S moves away from R, $u \rightarrow -u$

$$f_R = f_s \frac{v}{v+u}$$

S moving away from R

What if receiver is moving?

Moving receiver

- dist between waves also decreases

$d = \lambda_s - u \Delta t$ but now Δt is period of wave that R measures

$$\Delta t = T_R$$

$$\text{so } d = \lambda_s - u T_R$$

and $d = \lambda_R$ (just like before) dist between waves
that R measures

$$\text{so } \lambda_R = \lambda_s - u T_R$$

$$= \lambda_s - \frac{u}{f_R}$$

$$\text{use } v = \lambda_R f_R = \lambda_s f_s$$

$$\text{so } \frac{v}{f_R} = \frac{v}{f_s} - \frac{u}{f_R}$$

$$\frac{v+u}{f_R} = \frac{v}{f_s} \Rightarrow$$

$$f_R = f_s \frac{v+u}{v}$$

R moving
towards S

for R moving away from S, $u \rightarrow -u$

$$f_R = f_s \frac{v-u}{v}$$

R moving
away from S

200 2/17

400 2/17